上海交通大学谢峰教授学术报告

发布日期:2021-11-24    浏览次数:

报告题目:MHD boundary layers theory in Sobolev spaces without monotonicity I: Well-posedness theory

报告人:谢峰教授(上海交通大学)

报告时间:202111261745-1845

报告地点:88038威尼斯4号楼302/腾讯会议:491360851


报告摘要:

The authors consider Prandtl-type equations obtained from an incompressible MHD system with a non-slip boundary condition on the velocity and perfectly conducting condition on the magnetic field. Assuming that the initial tangential component of the magnetic field is not zero, local-in-time existence and uniqueness of solutions is obtained for the nonlinear MHD boundary layer equations. Unlike the case of the classical Prandtl equations, no monotonicity condition on the tangential velocity is required. This confirms mathematically that the magnetic field has a physical stabilizing effect for the MHD boundary layer.


报告人简介:

谢峰,上海交通大学教授、德国洪堡学者、上海市青年科技启明星,主要研究流体力学中非线性偏微分方程解的多尺度分析和奇异极限等。特别是,Prandtl流体边界层的稳定性和高雷诺数极限的数学理论。部分研究成果发表于Communications on Pure and Applied MathematicsJournal of Functional AnalysisSIAM Journal on Mathematical Analysis等国际著名SCI数学期刊上,担任国际著名SCI数学期刊Communications on Pure Applied Analysis杂志编委。