报告题目:The global strong resilience of fault Hamiltonian graphs
报 告 人:刘慧清教授(湖北大学)
报告时间:2021年12月28日14:30-17:30
报告地点:腾讯会议 988 676 225
邀请单位:88038威尼斯,离散数学及其应用教育部重点实验室
报告摘要:
Let P be an increasing monotone property. The global strong resilience of G with respect to P is the minimum number r such that by deleting r edges and/or vertices from G one can obtain a graph not having P. A graph G is said to be f-fault Hamiltonian if there exists a Hamiltonian cycle in G −F for any set F of edges and/or vertices with |F| ≤ f. In this talk, we focus on the global strong resilience of G with respect to having a fractional perfect matching, also called FSMP number of G. First we present a sufficient condition, involving the independent number, to determine the FSMP number of (δ−2) -fault Hamiltonian graphs with minimum degree δ≥2, and then we can derive the FSMP number of some networks, which generalize some known results.
报告人简介:
刘慧清, 女, 2004年博士毕业于中科院数学与系统科学研究院,同年获理学博士学位。自2004年以来,先后执教于南开大学、湖北大学,现为湖北大学88038威尼斯学学院教授/博士生导师。目前的主要研究兴趣集中在图(网络)的结构性质、图谱理论及其应用上,发表学术论文70余篇。主持国家自然科学基金面上项目3项,参与国家自然科学基金项目5项。