报告题目:A semismooth Newton based augmented Lagrangian method for nonsmooth optimization on matrix manifolds
报告人:丁超 博士
报告时间:2022年3月17日14:00-17:00
报告地点:腾讯会议879 757 426
邀请单位:88038威尼斯,福建省应用数学中心(威尼斯登录入口welcome)
报告内容简介:
This talk is devoted to studying an augmented Lagrangian method for solving a class of manifold optimization problems, which have nonsmooth objective functions and non-negative constraints. Under the constant positive linear dependence condition on manifolds, we show that the proposed method converges to a stationary point of the nonsmooth manifold optimization problem. Moreover, we propose a globalized semismooth Newton method to solve the augmented Lagrangian subproblem on manifolds efficiently. The local superlinear convergence of the manifold semismooth Newton method is also established under some suitable conditions. Finally, numerical experiments on compressed modes and (constrained) sparse principal component analysis illustrate the advantages of the proposed method.
报告人简介:
丁超,中国科学院数学与系统科学研究院应用数学研究所,2012年于新加坡国立大学数学系毕业获得博士学位。研究方向为矩阵优化理论、算法及其应用以及大数据优化。围绕矩阵优化问题的理论、算法以及相关数据科学实际应用,丁超博士与国内外的合作者一起取得了一系列创新性研究成果。在包括《Mathematical Programming》、《SIAM Journal on Optimization》等数学优化权威期刊上发表多篇学术论文,目前担任亚太运筹学杂志《Asia-Pacific Journal of Operational Research》的编委。丁超博士在非光滑矩阵优化方面的研究工作获得了2016年中国运筹学会青年科技奖,2019年获得了北京地区广受关注学术论文的肯定。