报告主题:Ramsey goodness of cycles
报 告 人:刘鸿教授
报告时间:2022年11月11日9:00--12:00
报告地点:腾讯会议ID:762-249-431
邀请单位:88038威尼斯、离散数学及其应用省部共建教育部重点实验室
报告摘要:
The Ramsey number R(F,H) is the minimum number N such that any N-vertex graph either contains a copy of F or its complement contains H. Burr in 1981 proved a pleasingly general result that for any graph H, provided n is sufficiently large, a natural lower bound construction gives the correct Ramsey number involving cycles: R(Cn,H)=(n−1)(χ(H)−1)+σ(H), where σ(H) is the minimum possible size of a colour class in a χ(H)-colouring of H. Allen, Brightwell and Skokan conjectured that the same should be true already when n≥|H|χ(H).
We improve this 40-year-old result of Burr by giving quantitative bounds of the form n≥C|H|log4χ(H), which is optimal up to the logarithmic factor. In particular, this proves a strengthening of the Allen-Brightwell-Skokan conjecture for all graphs H with large chromatic number.
This is joint work with John Haslegrave, Joseph Hyde, Jaehoon Kim.
报告人简介:
刘鸿教授2015在伊利诺伊大学厄本那-香槟分校取得博士学位,师从József Balogh。后于2019年在华威大学取得终身教职,并摘获英国科研创新未来领袖奖。于2022年加入韩国基础科学研究院任首席科学家,现是其极值及概率组合研究组的领头人。研究领域包括极值,概率组合,图论,离散几何,组合数论等。
欢迎感兴趣的老师和同学们参加!